## THIRUVALLUVAR UNIVERSITY, VELLORE – 632 115 B.Sc. MATHEMATICS – 2022-2023 onwards

| Semester: I/III    | Pape                                                      | r type: Allied |
|--------------------|-----------------------------------------------------------|----------------|
| Paper code: A – 01 | Name of the Paper: ALLIED MATHEMATICS – I                 | Credit:4       |
| (For B.            | Sc., Physics, Chemistry, Computer Science and Statistics) | )              |

| Total Hours per Week: 7 | Lecture Hours: 7 | Tutorial Hours: Practical Hours: |
|-------------------------|------------------|----------------------------------|
|                         |                  |                                  |

### **Course Objective**

- 1. To explore the fundamental concepts of Mathematics.
- 2. To acquire knowledge about finding approximate roots of the polynomial equations.
- 3. To improve students' ability in applications of matrices and calculus.
- 4. Students are exposed to understanding the concept of derivatives and their applications.
- 5. To expose double and triple integrals and their applications.

### **Course Outcomes**

- 1. After studied unit -1, the student will be able to find out the approximate roots of polynomial equations.
- 2. After studied unit -2, the student will be able to develop the skills of finding roots of simultaneous equations.
- 3. After studied unit -3, the student will be able to demonstrate knowledge about matrices and their applications.
- 4. After studied unit -4, the student will be able to carry out calculations of problems related to curvature and radius of curvature.
- 5. After studied unit -5, the student will be able to evaluate double and triple integrals, and enabled to understand the applications of integration in real-life situations.

### **Matching Table**

| Unit | i. Remembering | ii. Understanding | iii. Applying | iv. Analyzing | v. Evaluating | vi. Creating |
|------|----------------|-------------------|---------------|---------------|---------------|--------------|
| 1    | Yes            | Yes               | Yes           | Yes           | Yes           | Yes          |
| 2    | Yes            | Yes               | Yes           | Yes           | Yes           | Yes          |
| 3    | Yes            | Yes               | Yes           | No            | Yes           | No           |
| 4    | Yes            | Yes               | Yes           | Yes           | Yes           | No           |
| 5    | Yes            | Yes               | Yes           | Yes           | Yes           | Yes          |

# $\underline{\mathbf{U}}$ NIT-I: SOLUTIONS OF TRANSCENDENTAL AND ALGEBRAIC EQUATIONS

Iteration method, Bisection method, Newton's method - Regula Falsi method, Horner's method(without proof) (Simple problems only)

### Unit-II: SOLUTIONS OF SIMULTANEOUS EQUATIONS

Gauss Elimination method - Gauss Jordan method - Gauss Seidel Iterative method - Gauss Jacobi method (Restricted to three variables only) (Simple problems only)

#### **UNIT-III: MATRICES**

Characteristic equation of a square matrix— Eigen values and eigen vectors — Cayley — Hamilton theorem [without proof] — Verification and computation of inverse matrix-

### **UNIT-IV: DIFFERENTIAL CALCULUS**

n-th derivatives – Leibnitz theorem [without proof] and applications – Jacobians – Curvature and radius of curvature in Cartesian co-ordinates and polar co-ordinates.

### UNIT-V: APPLICATION OF INTEGRATION

Evaluation of double, triple integrals – Simple applications to area, volume, and centroid.

### **TEXT BOOKS:**

**1.** P.Kandasamy, K.Thilagavathy (2003) Calculus of Finite differences & Numerical Analysis, S. Chand & Company Ltd., New Delhi-55.

Unit-I: Chapter 1 Unit-II: Chapter 2

2. P. Duraipandian and Dr. S. Udayabaskaran (1997), "Allied Mathematics", Vol I & II.

Chennai: Muhil Publishers.

Unit-III: Sec(1.1.1,1.1.2,1.2,1.4.3),

Unit-IV: Sec(2.7,4.1,4.1.1,4.2),

Unit-V: Chap:3(3.4,3.4.1,3.5,3.5.1,3.5.2,3.6),

# **REFERENCE BOOKS:**

- 1. P. Balasubramanian and K. G. Subramanian. 1997, "Ancillary Mathematics", Vol I & II. New Delhi: Tata McGraw Hill.
- 2. S.P.Rajagopalan and R.Sattanathan(2005), "Allied Mathematics", Vol I & II. New Delhi: Vikas Publications.
- 3. S.J. Venkatesan, "Allied Mathematics I", Sri Krishna Publications, Chennai.
- 4. P. R. Vittal (2003), "Allied Mathematics", Margham Publication, Chennai.
- 5. A.Singaravelu "Numerical Methods" Meenakshi Publications

Course Material: website links, e-Books and e-journals

https://www.classcentral.com/course/polynomials-roots-44577

https://ocw.mit.edu/courses/22-15-essential-numerical-methods-fall-

2014/pages/syllabus/

https://ocw.mit.edu/courses/18-330-introduction-to-numerical-analysis-spring-2004/

https://tutorial.math.lamar.edu/Classes/CalcII/CalcII.aspx

**Mapping with Programme Outcomes** 

| Cos | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|
| CO1 | S   | S   | S   | M   | M   | S   | M   | S   | S   | M    |
| CO2 | M   | S   | S   | S   | S   | S   | S   | M   | M   | S    |
| CO3 | M   | S   | S   | S   | S   | S   | M   | S   | S   | S    |
| CO4 | S   | S   | S   | M   | S   | S   | M   | M   | M   | S    |
| CO5 | S   | M   | S   | M   | M   | M   | M   | S   | S   | S    |

 $\begin{array}{l} PO-Programme\ Outcome,\ CO-Course\ outcome\\ S-Strong,\ M-Medium,\ L-Low\ (may\ be\ avoided) \end{array}$ 

## THIRUVALLUVAR UNIVERSITY, VELLORE – 632 115 B.Sc. MATHEMATICS – 2022-2023 onwards

Semester: II/IV Paper type: Allied Paper code: A – 02 Name of the Paper: PAPER – 2 – ALLIED MATHEMATICS –II Credit:4

(For B.Sc., Physics, Chemistry, Computer Science and Statistics)

| Total Hours per Week: 7 | Lecture Hours: 7 | Tutorial Hours: | Practical Hours: |
|-------------------------|------------------|-----------------|------------------|
|                         |                  |                 |                  |

# **Course Objective**

- 1. This course is designed for the students to expose the topics such as expansions of trigonometric functions, partial differential equations, vector differentiation, and integration.
- 2. To gain knowledge of expansions of trigonometric functions.
- 3. To acquire the knowledge of solving partial differential equations.
- 4. Basic knowledge of vector calculus.
- 5. To understand and carry out the calculations of a given set of data.

### **Course Outcomes**

- 1. After studied unit -1, the student will be able to find out the expansions of trigonometric functions and carry out problems related to hyperbolic and inverse hyperbolic functions.
- 2. After studied unit -2, the student will be able to provide a basic knowledge of partial differential equations and develops knowledge on handling practical problems.
- 3. After studied unit -3, the student will be able to demonstrate knowledge of solving problems involving vector and scalar functions.
- 4. After studied unit -4, the student will be able to carry out problems on vector integration.
- 5. After studied unit -5, the student will be able to understand the applications of differentiation and integration in real-life situations.

# **Matching Table**

| Unit | i. Remembering | ii. Understanding | iii. Applying | iv. Analyzing | v. Evaluating | vi. Creating |
|------|----------------|-------------------|---------------|---------------|---------------|--------------|
| 1    | Yes            | Yes               | Yes           | No            | Yes           | No           |
| 2    | Yes            | Yes               | Yes           | Yes           | Yes           | Yes          |
| 3    | Yes            | Yes               | Yes           | Yes           | Yes           | Yes          |
| 4    | Yes            | Yes               | Yes           | Yes           | Yes           | No           |
| 5    | Yes            | Yes               | Yes           | Yes           | Yes           | No           |

### **UNIT-I:TRIGONOMETRY**

Expansions of  $\sin^n \theta$ ,  $\cos^n \theta$ ,  $\sin n\theta$ ,  $\cos n\theta$ ,  $\tan n\theta$  – Expansions of  $\sin n\theta$ ,  $\cos n\theta$ ,  $\tan n\theta$  in terms of  $\theta$  – Hyperbolic and inverse hyperbolic functions – Logarithms of complex numbers. Unit-I: Chap: 6 (6.1,6.1.1-6.1.3,6.2,6.2.1-6.2.3,6.3,6.4)

### **UNIT-II: PARTIAL DIFFERENTIAL EQUATIONS**

Formation-complete integrals and general integrals-Four standard types-Lagranges equations. Unit-II: Chap:6 (6.1,6.1.1,6.2,6.3,6.4).

#### **UNIT-III: VECTOR DIFFRENTIATION**

Vector functions- Derivative of a vector function- Scalar and vector point functions- Gradient of a scalar point function- Gradient- Directional derivatives –Unit vector normal to a surface – angle between the surfaces-divergence, curl.

Unit-IIISec(8.1,8.1.1,8.2,8.3,8.3.1,8.3.2,8.4,8.4.1,8.4.2,8.4.3,8.4.4).

### **UNIT-IV: VECTOR INTEGRATION**

Green's theorem in the plane- Gauss divergence theorem- Stoke's theorem [without proofs]. Unit-IV:Sec(8.6.1, - 8.6.3).

#### **UNIT-V: FINITE DIFFERENCES**

Operator E, Relation between  $\Delta$ ,  $\nabla$  and E – Interpolation – Newton – Gregory forward & backward formulae for interpolation-Lagrange's interpolation formula for unequal intervals (without proof) .

Unit-V:Sec(5.1,5.2).

### **TEXT BOOK:**

1.P. Duraipandian and S. Udayabaskaran(1997), "Allied Mathematics", Vol I & II. Chennai: Muhil Publishers.

Unit-I: Chap: 6 (6.1,6.1.1-6.1.3,6.2,6.2.1-6.2.3,6.3,6.4), Vol I,

Unit-II: Chap:6 (6.1,6.1.1,6.2,6.3,6.4), Vol II,

Unit-IIISec(8.1,8.1.1,8.2,8.3,8.3.1,8.3.2,8.4,8.4.1,8.4.2,8.4.3,8.4.4), Vol I,

Unit-IV:Sec(8.6.1, - 8.6.3), Vol I,

Unit-V:Sec(5.1,5.2), Vol II.

#### **REFERENCE BOOKS:**

- 1. P. Balasubramanian and K. G. Subramanian. 1997, "Ancillary Mathematics", Vol I & II. New Delhi: Tata McGraw Hill.
- 2. S.P.Rajagopalan and R.Sattanathan(2005), "Allied Mathematics", Vol I & II. New Delhi: Vikas Publications.
- 3. S.J. Venkatesan, "Allied Mathematics II", Sri Krishna Publications, Chennai.
- 4. P. R. Vittal (2003), "Allied Mathematics", Margham Publications, Chennai.
- 5. P.Kandhasamy, K. Thilagavathy (2003), "Allied Mathematics" Vol I & II, New Delhi: Tata McGraw Hill.
- **6.** P.Kandasamy, K.Thilagavathy (2003) Calculus of Finite differences & Numerical Analysis, S. Chand & Company Ltd., New Delhi-55.

**Course Material:** website links, e-Books and e-journals https://tutorial.math.lamar.edu/Extras/AlgebraTrigReview/AlgebraTrig.aspx

https://ocw.mit.edu/courses/18-330-introduction-to-numerical-analysis-spring-2004/https://www.engineering.iastate.edu/student-services/orientation/math-142-trigonometry-analytical-geometry/

https://www.classcentral.com/course/edx-differential-equations-fourier-series-and-partial-differential-equations-11763

https://www.classcentral.com/course/vector-calculus-engineers-17387 https://www.classcentral.com/course/brilliant-vector-calculus-59277

## **Mapping with Programme Outcomes**

| Cos | PO1 | PO2 | PO3 | PO4 | PO5 | P06 | PO7 | PO8 | PO9 | PO10 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|
| CO1 | S   | S   | S   | M   | M   | M   | M   | M   | M   | M    |
| CO2 | M   | M   | M   | S   | S   | S   | M   | S   | S   | M    |
| CO3 | S   | S   | S   | S   | M   | M   | S   | S   | M   | S    |
| CO4 | M   | S   | S   | S   | S   | M   | M   | M   | M   | M    |
| CO5 | S   | S   | S   | M   | M   | M   | M   | M   | M   | M    |

PO – Programme Outcome

CO – Course outcome

S – Strong M-Medium L – Low (may be avoided)